Чувствительность детектора к температуре обусловливает специальные меры по стабилизации температуры самого детектора и подвижной фазы при входе в детектор. В этом случае применение более длинных соединительных трубок на входе в детектор, действующих как теплообменники, приводит к высокому экстраколоночному расширению пиков и снижает достигнутую в колонке эффективность разделения. В хроматографе, оснащенном рефрактометрическим детектором, с целью стабилизации потока элюента и параметров удерживания сорбатов в колонке желательно применять термостатирование колонки и детектора. Для реализации максимальной чувствительности детектора на уровне 10-8 единиц показателя преломления точность термостатирования должна быть не более ±0.01°С. При хорошем термостатировании детектор мало чувствителен к изменениям расхода подвижной фазы. Он прост конструктивно, удобен в работе, недеструктивен и дает высокую воспроизводимость показаний. Недостатком детектора является его нечувствительность к веществам, имеющим показатель преломления, одинаковый с растворителем.
Работа большинства современных рефрактометрических детекторов основана на трех различных принципах измерения сигнала: отклонении, отражении и интерференции. Ниже на рисунке представлена оптическая схема рефрактометра первого типа.
Свет от лампы (1), проходит через конденсорную линзу (2), растровую решётку (3) и линзу (4), служащую для образования параллельных пучков света, которые попадают в кварцевую кювету. Кювета представляет собой две смежные призмы a, b, разделённые светопроницаемой перегородкой, образующие плоскопараллельную пластину. Призма a заполняется подвижной фазой, тогда как через призму b протекает элюат с хроматографической колонки (стрелки указывают на направление потока). При наличии разности показателей преломления в призмах, свет, падающий на входную грань кюветы преломляется на границе раздела призм и отклоняется на некоторый угол. Отклонённый свет расщепляется призмой и падает на пару фотодиодов (8). Разность сигналов обоих фотодиодов пропорциональна отклонению луча света, а, следовательно, и разности коэффициентов преломления. Установка нуля детектора осуществляется вращением плоскопараллельной пластины (7), смещающей луч света.
Другой метод измерения основан на законе отражения света (закон Френеля), согласно которому интенсивность отраженного света, падающего на поверхность границы раздела жидкости и стекла, пропорциональна углу падения и разности показателей преломления двух сред. Преимуществом детекторов, работающих на этом принципе, является меньший объем ячеек (< 3 мкл), в связи с чем они могут работать при небольших расходах элюента и с высокоэффективными колонками. Однако чувствительность таких детекторов в 50-100 раз ниже чувствительности других типов рефрактометрических детекторов, что, кстати, делает их более пригодными для градиентного элюирования. Так как детектирование происходит на границе раздела жидкости и стекла, для получения стабильной работы детектора необходимо следить за чистотой стекла.
Детектор френелевского типа включает в себя источник света, конденсор, дифференциальную ячейку стеклянные стержни, линзу и фотоприемник. В его состав входят также теплообменники и диафрагма для регулирования силы светового потока. Источник света, снабженный инфракрасным блокирующим фильтром, предназначен для создания светового потока в видимой части спектра. Конденсор предназначен для формирования плоского пучка света, падающего на ячейку. Ячейка рефрактометра изготовлена из нержавеющей стали, герметизируется защитными стеклами, призмой и тефлоновыми прокладками. Стеклянные стержни и линза фокусируют прошедшие через ячейки световые потоки на светочувствительные элементы фотоприемника. Фокусировка позволяет устранить перекрывание световых потоков, которое может привести к дифференцированию хроматографических пиков.
Подбор очковой коррекции |
Закаливание организма |
Гигиена полости рта |